Beam Dynamics in Longitudinal Phase Space

Tegan Johnson, Otterbein University
Lee Teng Internship
Duncan Scott, Fermilab
Nick Evans, University of Texas: Austin
August 8th, 2013

Fermilab

Introduction

- Longitudinal Dynamics in Synchrotrons
 - What energy does the particle gain/lose, and how does its phase shift relative to the RF frequency
- Tomography
 - Method of reconstructing a two dimensional distribution from a sequence of one dimensional profiles taken at various angles, a CT scan is one example
 - Fermilab tomography program reconstructs the beam in longitudinal phase space using a series of projections from a WCM
- Studying Tomography without a Beam
 - Simulate and reconstruct the density in longitudinal phase space
 - First, for a well understood "matched" beam, then extended to the unmatched case

Fermilab's Main Injector

- 8 GeV to 120 GeV rapid cycling synchrotron
 - cycles in 1.33 seconds, after latest upgrade
 - $11 \mu s$ period
- Generates high intensity proton beams for various particle physics experiments
 - Latest focus is to produce high intensity neutrino beams
- Our goal: provide users with high quality beam
 - Understand beam dynamics in order to manipulate them
- Tomography goal: a real time reconstruction of the beam in longitudinal phase space (LPS)
 - LPS tomography first implemented at CERN c. 2000

Longitudinal Dynamics

- Non-Linear potential
 - Sinusoidal relationship between kinetic and potential energy, comparable to a pendulum
- Conservative System
 - For stationary buckets, particles move in contours of constant total energy governed by the Hamiltonian,

$$\Delta E^2 + \frac{E_s eV \beta^2}{\eta \pi h} (\cos \phi + \phi \sin \phi_s) = \mathcal{H}$$

- Where the phase can also be expressed as Δt to RF phase
- Matched Bunch vs Unmatched

Reconstructing a Matched Beam

 Start with a series of contours with identical action (MeV•ns) increases

 Hamiltonians of such contours found via interpolation of arbitrary data

Area <u>between</u>
 contours is
 projected onto the
 time axis

These time
 dependent
 "sombrero"
 functions are then
 used to reconstruct
 the beam

- 2-D gaussian particle distribution is projected down to a 1-D time profile
- A linear combination
 of the sombrero
 functions is fit to the
 profile
 - coefficients are restricted to positive values

Normalized sombrero coefficients are compared to actual percentage of particles in the corresponding actions

Results of Matched Beam Reconstruction

Reconstructing an Unmatched Bunch

- Test this single profile reconstruction method on an off-axis beam
- Track the same beam to equilibrium and then retest
- Compare the initial sombrero fits and coefficients to the equilibrium fits and coefficients

Initial distribution of unmatched bunch

Distribution of unmatched bunch after being tracked to equilibrium

Fit Before Tracking

Coefficients
Particle %

Fit After Tracking

Conclusion

- Results are more or less what we expected
 - Single profile reconstructions are possible with beams in equilibrium
 - Cannot show reconstructions leading up to equilibrium
- From here we could
 - Optimize the code
 - Test method on actual Beam

Acknowledgements

- Duncan Scott & Nick Evans
- Eric Prebys & Carol Angarola
- C. Y. Tan for the one profile method